Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Prenat Diagn ; 43(6): 730-733, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37160702

RESUMO

We report a case of pyruvate dehydrogenase E1 alpha subunit deficiency associated with a novel hemizygous PDHA1 variant presenting prenatally as multiple structural brain abnormalities in a male fetus. A healthy Finnish couple was initially referred to the Fetomaternal Medical Center because of suspected fetal choroid plexus cyst at 11 + 2 weeks of pregnancy. At 20 + 0 weeks, multiple abnormalities were observed with ultrasound including narrow thorax, slightly enlarged heart, hypoplastic cerebellum, absent cerebellar vermis and ventriculomegaly. Autopsy and genetic analyses were performed after the termination of pregnancy. The findings of macroscopic examination included cleft palate, abnormally overlapping position of fingers and toes and dysmorphic facial features. Neuropathological examination confirmed the absence of corpus callosum, cerebellar hypoplasia and ventriculomegaly. Nodular neuronal heterotopia was also observed. Trio exome sequencing revealed a novel hemizygous de novo variant c.1144C>T p.(Gln382*) in the PDHA1 gene, classified as likely pathogenic. We suggest that inherited metabolic disorders should be kept in mind as differential diagnoses in fetuses with structural brain abnormalities.


Assuntos
Anormalidades Múltiplas , Hidrocefalia , Doença da Deficiência do Complexo de Piruvato Desidrogenase , Gravidez , Feminino , Humanos , Masculino , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/patologia , Anormalidades Múltiplas/diagnóstico por imagem , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Cerebelo , Feto/diagnóstico por imagem , Feto/patologia
2.
Neuropediatrics ; 54(3): 211-216, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36693417

RESUMO

INTRODUCTION: Pyruvate dehydrogenase complex (PDH) deficiency (Online Mendelian Inheritance in Man # 312170) is a relatively common mitochondrial disorder, caused by mutations in the X-linked PDHA1 gene and presenting with a variable phenotypic spectrum, ranging from severe infantile encephalopathy to milder chronic neurological disorders.Isolated peripheral neuropathy as predominant clinical presentation is uncommon. RESULTS: We report on a patient, now 21 years old, presenting at the age of 2 years with recurrent symmetric weakness as first symptom of a PDH deficiency. Neurophysiological evaluation proving a sensory-motor polyneuropathy with conduction blocks and presence of elevated cerebrospinal fluid proteins, suggested a chronic inflammatory demyelinating polyneuropathy. The evidence of high serum lactate and the alterations in oxidative metabolism in muscle biopsy pointed toward the final diagnosis. After starting nutritional supplements, no further episodes occurred. A hemizygous mutation in PDHA1 (p.Arg88Cys) was identified. This mutation has been previously described in five patients with a similar phenotype. A three-dimensional reconstruction demonstrated that mutations affecting this arginine destabilize the interactions between the subunits of the E1 complex. CONCLUSION: We summarize the clinical and genetic characteristics of one patient with PDH deficiency presenting isolated peripheral nervous system involvement. This study highlights that the diagnosis of PDH deficiency should be considered in children with unexplained peripheral neuropathy, even with features suggestive of acquired forms, especially in case of early onset and limited response to treatment. A simple analysis of lactic acid could help to target the diagnosis.In addition, we suggest that the residue Arg88 is the most frequently involved in this specific phenotype of PDH deficiency.


Assuntos
Polirradiculoneuropatia Desmielinizante Inflamatória Crônica , Doença da Deficiência do Complexo de Piruvato Desidrogenase , Humanos , Ácido Láctico/líquido cefalorraquidiano , Ácido Láctico/uso terapêutico , Mutação , Fenótipo , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/diagnóstico , Doença da Deficiência do Complexo de Piruvato Desidrogenase/diagnóstico , Doença da Deficiência do Complexo de Piruvato Desidrogenase/tratamento farmacológico , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética
4.
Zh Nevrol Psikhiatr Im S S Korsakova ; 122(9. Vyp. 2): 27-31, 2022.
Artigo em Russo | MEDLINE | ID: mdl-36170095

RESUMO

Deficiency of the pyruvate dehydrogenase complex E1-alpha subunit is a rare genetic disease with X-linked dominant inheritance. The clinical spectrum of the disease is extremely wide: from lethal forms in children of the first year of life with lactic acidosis to chronic neurological manifestations with structural changes in the central nervous system without increasing the level of lactate in the blood. The authors report a case of this disease in a preschool child and present the results of laboratory and instrumental studies. The importance of early diagnosis of the disease is emphasized.


Assuntos
Epilepsia , Transtornos dos Movimentos , Doença da Deficiência do Complexo de Piruvato Desidrogenase , Pré-Escolar , Epilepsia/complicações , Epilepsia/diagnóstico , Epilepsia/genética , Humanos , Lactatos , Transtornos dos Movimentos/diagnóstico , Transtornos dos Movimentos/genética , Mutação , Piruvato Desidrogenase (Lipoamida)/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/complicações , Doença da Deficiência do Complexo de Piruvato Desidrogenase/diagnóstico , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética
5.
Br J Biomed Sci ; 79: 10382, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35996497

RESUMO

Pyruvate dehydrogenase (PDH) deficiency is caused by a number of pathogenic variants and the most common are found in the PDHA1 gene. The PDHA1 gene encodes one of the subunits of the PDH enzyme found in a carbohydrate metabolism pathway involved in energy production. Pathogenic variants of PDHA1 gene usually impact the α-subunit of PDH causing energy reduction. It potentially leads to increased mortality in sufferers. Potential treatments for this disease include dichloroacetate and phenylbutyrate, previously used for other diseases such as cancer and maple syrup urine disease. However, not much is known about their efficacy in treating PDH deficiency. Effective treatment for PDH deficiency is crucial as carbohydrate is needed in a healthy diet and rice is the staple food for a large portion of the Asian population. This review analysed the efficacy of dichloroacetate and phenylbutyrate as potential treatments for PDH deficiency caused by PDHA1 pathogenic variants. Based on the findings of this review, dichloroacetate will have an effect on most PDHA1 pathogenic variant and can act as a temporary treatment to reduce the lactic acidosis, a common symptom of PDH deficiency. Phenylbutyrate can only be used on patients with certain pathogenic variants (p.P221L, p.R234G, p.G249R, p.R349C, p.R349H) on the PDH protein. It is hoped that the review would provide an insight into these treatments and improve the quality of lives for patients with PDH deficiency.


Assuntos
Doença da Deficiência do Complexo de Piruvato Desidrogenase , Humanos , Fenilbutiratos/uso terapêutico , Piruvato Desidrogenase (Lipoamida)/genética , Piruvato Desidrogenase (Lipoamida)/metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/diagnóstico , Doença da Deficiência do Complexo de Piruvato Desidrogenase/tratamento farmacológico , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética
6.
J Chem Inf Model ; 62(14): 3463-3475, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35797142

RESUMO

Pyruvate dehydrogenase complex (PDC) deficiency is a major cause of primary lactic acidemia resulting in high morbidity and mortality, with limited therapeutic options. The E1 component of the mitochondrial multienzyme PDC (PDC-E1) is a symmetric dimer of heterodimers (αß/α'ß') encoded by the PDHA1 and PDHB genes, with two symmetric active sites each consisting of highly conserved phosphorylation loops A and B. PDHA1 mutations are responsible for 82-88% of cases. Greater than 85% of E1α residues with disease-causing missense mutations (DMMs) are solvent-inaccessible, with ∼30% among those involved in subunit-subunit interface contact (SSIC). We performed molecular dynamics simulations of wild-type (WT) PDC-E1 and E1 variants with E1α DMMs at R349 and W185 (residues involved in SSIC), to investigate their impact on human PDC-E1 structure. We evaluated the change in E1 structure and dynamics and examined their implications on E1 function with the specific DMMs. We found that the dynamics of phosphorylation Loop A, which is crucial for E1 biological activity, changes with DMMs that are at least about 15 Å away. Because communication is essential for PDC-E1 activity (with alternating active sites), we also investigated the possible communication network within WT PDC-E1 via centrality analysis. We observed that DMMs altered/disrupted the communication network of PDC-E1. Collectively, these results indicate allosteric effect in PDC-E1, with implications for the development of novel small-molecule therapeutics for specific recurrent E1α DMMs such as replacements of R349 responsible for ∼10% of PDC deficiency due to E1α DMMs.


Assuntos
Piruvato Desidrogenase (Lipoamida) , Doença da Deficiência do Complexo de Piruvato Desidrogenase , Humanos , Mitocôndrias , Mutação , Piruvato Desidrogenase (Lipoamida)/química , Piruvato Desidrogenase (Lipoamida)/genética , Complexo Piruvato Desidrogenase/química , Complexo Piruvato Desidrogenase/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética
8.
J Inherit Metab Dis ; 45(3): 557-570, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35038180

RESUMO

Pyruvate dehydrogenase complex deficiency is a major cause of primary lactic acidemia resulting in high morbidity and mortality, with limited therapeutic options. PDHA1 mutations are responsible for >82% of cases. The E1 component of PDC is a symmetric dimer of heterodimers (αß/α'ß') encoded by PDHA1 and PDHB. We measured solvent accessibility surface area (SASA), utilized nearest-neighbor analysis, incorporated sequence changes using mutagenesis tool in PyMOL, and performed molecular modeling with SWISS-MODEL, to investigate the impact of residues with disease-causing missense variants (DMVs) on E1 structure and function. We reviewed 166 and 13 genetically resolved cases due to PDHA1 and PDHB, respectively, from variant databases. We expanded on 102 E1α and 13 E1ß nonduplicate DMVs. DMVs of E1α Arg112-Arg224 stretch (exons 5-7) and of E1α Arg residues constituted 40% and 39% of cases, respectively, with invariant Arg349 accounting for 22% of arginine replacements. SASA analysis showed that 86% and 84% of residues with nonduplicate DMVs of E1α and E1ß, respectively, are solvent inaccessible ("buried"). Furthermore, 30% of E1α buried residues with DMVs are deleterious through perturbation of subunit-subunit interface contact (SSIC), with 73% located in the Arg112-Arg224 stretch. E1α Arg349 represented 74% of buried E1α Arg residues involved in SSIC. Structural perturbations resulting from residue replacements in some matched neighboring pairs of amino acids on different subunits involved in SSIC at 2.9-4.0 Å interatomic distance apart, exhibit similar clinical phenotype. Collectively, this work provides insight for future target-based advanced molecular modeling studies, with implications for development of novel therapeutics for specific recurrent DMVs of E1α.


Assuntos
Doença da Deficiência do Complexo de Piruvato Desidrogenase , Humanos , Mutação , Mutação de Sentido Incorreto , Piruvato Desidrogenase (Lipoamida)/química , Piruvato Desidrogenase (Lipoamida)/genética , Piruvato Desidrogenase (Lipoamida)/metabolismo , Complexo Piruvato Desidrogenase/química , Complexo Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Solventes
9.
Mol Genet Genomic Med ; 9(8): e1728, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34156167

RESUMO

BACKGROUND: Pyruvate dehydrogenase complex (PDHC) deficiency is a common neurodegenerative disease associated with abnormal mitochondrial energy metabolism. The diagnosis of PDHC is difficult because of the lack of a rapid, accurate, and cost-effective clinical diagnostic method. METHODS: A 4-year-old boy was preliminarily diagnosed with putative Leigh syndrome based on the clinical presentation. PDHC activity in peripheral blood leukocytes and a corresponding gene analysis were subsequently undertaken. Sodium pyruvate 1-13 C was used for the analysis of PDHC activity in peripheral leukocytes. The genes encoding PDHC were then scanned for mutations. RESULTS: The results showed that the corresponding PDHC activity was dramatically decreased to 10.5 nmol/h/mg protein as compared with that of healthy controls (124.6 ± 7.1 nmol/h/mg). The ratio of PDHC to citrate synthase was 2.1% (control: 425.3 ± 27.1). The mutation analysis led to the identification of a missense mutation, NM_000284.4:g214C>T, in exon 3 of PDHC. CONCLUSION: The peripheral blood leukocyte PDHC activity assay may provide a practical enzymatic diagnostic method for PDHC-related mitochondrial diseases.


Assuntos
Ensaios Enzimáticos Clínicos/métodos , Leucócitos/metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/diagnóstico , Complexo Piruvato Desidrogenase/metabolismo , Pré-Escolar , Testes Genéticos/métodos , Humanos , Masculino , Mutação de Sentido Incorreto , Complexo Piruvato Desidrogenase/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/metabolismo
10.
Biochimie ; 183: 78-88, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33588022

RESUMO

Pyruvate dehydrogenase complex (PDC) catalyzes the oxidative decarboxylation of pyruvate to acetyl-coenzyme A, hinging glycolysis and the tricarboxylic acid cycle. PDC deficiency, an inborn error of metabolism, has a broad phenotypic spectrum. Symptoms range from fatal lactic acidosis or progressive neuromuscular impairment in the neonatal period, to chronic neurodegeneration. Most disease-causing mutations in PDC deficiency affect the PDHA1 gene, encoding the α subunit of the PDC-E1 component. Detailed biophysical analysis of pathogenic protein variants is a challenging approach to support the design of therapies based on improving and correcting protein structure and function. Herein, we report the characterization of clinically relevant PDC-E1α variants identified in Portuguese PDC deficient patients. These variants bear amino acid substitutions in different structural regions of PDC-E1α. The structural and functional analyses of recombinant heterotetrameric (αα'ßß') PDC-E1 variants, combined with molecular dynamics (MD) simulations, show a limited impact of the amino acid changes on the conformational stability, apart from the increased propensity for aggregation of the p.R253G variant as compared to wild-type PDC-E1. However, all variants presented a functional impairment in terms of lower residual PDC-E1 enzymatic activity and ≈3-100 × lower affinity for the thiamine pyrophosphate (TPP) cofactor, in comparison with wild-type PDC-E1. MD simulations neatly showed generally decreased stability (increased flexibility) of all variants with respect to the WT heterotetramer, particularly in the TPP binding region. These results are discussed in light of disease severity of the patients bearing such mutations and highlight the difficulty of developing chaperone-based therapies for PDC deficiency.


Assuntos
Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , Piruvato Desidrogenase (Lipoamida)/química , Doença da Deficiência do Complexo de Piruvato Desidrogenase , Tiamina Pirofosfato/química , Substituição de Aminoácidos , Estabilidade Enzimática , Humanos , Piruvato Desidrogenase (Lipoamida)/genética , Piruvato Desidrogenase (Lipoamida)/metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/enzimologia , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Tiamina Pirofosfato/genética , Tiamina Pirofosfato/metabolismo
11.
Eur J Paediatr Neurol ; 31: 27-30, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33592356

RESUMO

We report a 5-year-old male with a PDHA1 variant who presented with alternating hemiplegia of childhood and later developed developmental regression, basal ganglia injury and episodic lactic acidosis. Enzyme assay in lymphocytes confirmed a diagnosis of Pyruvate Dehydrogenase Complex (PDC) deficiency. His mother who was heterozygous for the same variant suffered from ophthalmoplegia, chronic migraine and developed flaccid paralysis at 36 years of age. PDHA1 is the most common genetic cause of PDC deficiency and presents with a myriad of neurological phenotypes including neonatal form with lactic acidosis, non-progressive infantile encephalopathy, Leigh syndrome subtype and intermittent ataxia. The presentations in our 2 patients contribute to the clinical heterogeneity of this neurogenetic condition.


Assuntos
Síndrome de Guillain-Barré/genética , Hemiplegia/genética , Mães , Piruvato Desidrogenase (Lipoamida)/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Adulto , Pré-Escolar , Feminino , Hemizigoto , Heterozigoto , Humanos , Masculino , Paraplegia/genética , Linhagem , Fenótipo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/diagnóstico
14.
Orphanet J Rare Dis ; 15(1): 298, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33092611

RESUMO

BACKGROUND: The pyruvate dehydrogenase complex (PDC) catalyzes the irreversible decarboxylation of pyruvate into acetyl-CoA. PDC deficiency can be caused by alterations in any of the genes encoding its several subunits. The resulting phenotype, though very heterogeneous, mainly affects the central nervous system. The aim of this study is to describe and discuss the clinical, biochemical and genotypic information from thirteen PDC deficient patients, thus seeking to establish possible genotype-phenotype correlations. RESULTS: The mutational spectrum showed that seven patients carry mutations in the PDHA1 gene encoding the E1α subunit, five patients carry mutations in the PDHX gene encoding the E3 binding protein, and the remaining patient carries mutations in the DLD gene encoding the E3 subunit. These data corroborate earlier reports describing PDHA1 mutations as the predominant cause of PDC deficiency but also reveal a notable prevalence of PDHX mutations among Portuguese patients, most of them carrying what seems to be a private mutation (p.R284X). The biochemical analyses revealed high lactate and pyruvate plasma levels whereas the lactate/pyruvate ratio was below 16; enzymatic activities, when compared to control values, indicated to be independent from the genotype and ranged from 8.5% to 30%, the latter being considered a cut-off value for primary PDC deficiency. Concerning the clinical features, all patients displayed psychomotor retardation/developmental delay, the severity of which seems to correlate with the type and localization of the mutation carried by the patient. The therapeutic options essentially include the administration of a ketogenic diet and supplementation with thiamine, although arginine aspartate intake revealed to be beneficial in some patients. Moreover, in silico analysis of the missense mutations present in this PDC deficient population allowed to envisage the molecular mechanism underlying these pathogenic variants. CONCLUSION: The identification of the disease-causing mutations, together with the functional and structural characterization of the mutant protein variants, allow to obtain an insight on the severity of the clinical phenotype and the selection of the most appropriate therapy.


Assuntos
Doença da Deficiência do Complexo de Piruvato Desidrogenase , Humanos , Mutação/genética , Portugal , Piruvato Desidrogenase (Lipoamida)/genética , Complexo Piruvato Desidrogenase/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética
15.
Hum Genet ; 138(11-12): 1313-1322, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31673819

RESUMO

Pyruvate dehydrogenase complex (PDC) deficiency caused by mutations in the X-linked PDHA1 gene has a broad clinical presentation, and the pattern of X-chromosome inactivation has been proposed as a major factor contributing to its variable expressivity in heterozygous females. Here, we report the first set of monozygotic twin females with PDC deficiency, caused by a novel, de novo heterozygous missense mutation in exon 11 of PDHA1 (NM_000284.3: c.1100A>T). Both twins presented in infancy with a similar clinical phenotype including developmental delay, episodes of hypotonia or encephalopathy, epilepsy, and slowly progressive motor impairment due to pyramidal, extrapyramidal, and cerebellar involvement. However, they exhibited clear differences in disease severity that correlated well with residual PDC activities (approximately 60% and 20% of mean control values, respectively) and levels of immunoreactive E1α subunit in cultured skin fibroblasts. To address whether the observed clinical and biochemical differences could be explained by the pattern of X-chromosome inactivation, we undertook an androgen receptor assay in peripheral blood. In the less severely affected twin, a significant bias in the relative activity of the two X chromosomes with a ratio of approximately 75:25 was detected, while the ratio was close to 50:50 in the other twin. Although it may be difficult to extrapolate these results to other tissues, our observation provides further support to the hypothesis that the pattern of X-chromosome inactivation may influence the phenotypic expression of the same mutation in heterozygous females and broadens the clinical and genetic spectrum of PDC deficiency.


Assuntos
Mutação , Piruvato Desidrogenase (Lipoamida)/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/patologia , Inativação do Cromossomo X , Feminino , Humanos , Masculino , Linhagem , Fenótipo , Prognóstico , Piruvato Desidrogenase (Lipoamida)/deficiência , Gêmeos Monozigóticos
16.
Hum Mol Genet ; 28(2): 290-306, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30304514

RESUMO

LonP1 is crucial for maintaining mitochondrial proteostasis and mitigating cell stress. We identified a novel homozygous missense LONP1 variant, c.2282 C > T, (p.Pro761Leu), by whole-exome and Sanger sequencing in two siblings born to healthy consanguineous parents. Both siblings presented with stepwise regression during infancy, profound hypotonia and muscle weakness, severe intellectual disability and progressive cerebellar atrophy on brain imaging. Muscle biopsy revealed the absence of ragged-red fibers, however, scattered cytochrome c oxidase-negative staining and electron dense mitochondrial inclusions were observed. Primary cultured fibroblasts from the siblings showed normal levels of mtDNA and mitochondrial transcripts, and normal activities of oxidative phosphorylation complexes I through V. Interestingly, fibroblasts of both siblings showed glucose-repressed oxygen consumption compared to their mother, whereas galactose and palmitic acid utilization were similar. Notably, the siblings' fibroblasts had reduced pyruvate dehydrogenase (PDH) activity and elevated intracellular lactate:pyruvate ratios, whereas plasma ratios were normal. We demonstrated that in the siblings' fibroblasts, PDH dysfunction was caused by increased levels of the phosphorylated E1α subunit of PDH, which inhibits enzyme activity. Blocking E1α phosphorylation activated PDH and reduced intracellular lactate concentrations. In addition, overexpressing wild-type LonP1 in the siblings' fibroblasts down-regulated phosphoE1α. Furthermore, in vitro studies demonstrated that purified LonP1-P761L failed to degrade phosphorylated E1α, in contrast to wild-type LonP1. We propose a novel mechanism whereby homozygous expression of the LonP1-P761L variant leads to PDH deficiency and energy metabolism dysfunction, which promotes severe neurologic impairment and neurodegeneration.


Assuntos
Proteases Dependentes de ATP/genética , Doenças Cerebelares/genética , Proteínas Mitocondriais/genética , Mutação , Doenças Neurodegenerativas/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Alelos , Doenças Cerebelares/enzimologia , DNA Mitocondrial/metabolismo , Homozigoto , Humanos , Recém-Nascido , Lactatos/metabolismo , Masculino , Doenças Neurodegenerativas/enzimologia , Linhagem , Fosforilação , Subunidades Proteicas/metabolismo , Proteólise , Doença da Deficiência do Complexo de Piruvato Desidrogenase/patologia
17.
J Biol Chem ; 293(34): 13204-13213, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-29970614

RESUMO

The pyruvate dehydrogenase multienzyme complex (PDHc) connects glycolysis to the tricarboxylic acid cycle by producing acetyl-CoA via the decarboxylation of pyruvate. Because of its pivotal role in glucose metabolism, this complex is closely regulated in mammals by reversible phosphorylation, the modulation of which is of interest in treating cancer, diabetes, and obesity. Mutations such as that leading to the αV138M variant in pyruvate dehydrogenase, the pyruvate-decarboxylating PDHc E1 component, can result in PDHc deficiency, an inborn error of metabolism that results in an array of symptoms such as lactic acidosis, progressive cognitive and neuromuscular deficits, and even death in infancy or childhood. Here we present an analysis of two X-ray crystal structures at 2.7-Å resolution, the first of the disease-associated human αV138M E1 variant and the second of human wildtype (WT) E1 with a bound adduct of its coenzyme thiamin diphosphate and the substrate analogue acetylphosphinate. The structures provide support for the role of regulatory loop disorder in E1 inactivation, and the αV138M variant structure also reveals that altered coenzyme binding can result in such disorder even in the absence of phosphorylation. Specifically, both E1 phosphorylation at αSer-264 and the αV138M substitution result in disordered loops that are not optimally oriented or available to efficiently bind the lipoyl domain of PDHc E2. Combined with an analysis of αV138M activity, these results underscore the general connection between regulatory loop disorder and loss of E1 catalytic efficiency.


Assuntos
Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/química , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/metabolismo , Mutação , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/química , Complexo Piruvato Desidrogenase/metabolismo , Tiamina Pirofosfato/metabolismo , Catálise , Cristalografia por Raios X , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/genética , Humanos , Cinética , Modelos Moleculares , Conformação Proteica , Complexo Piruvato Desidrogenase/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/enzimologia
18.
Am J Med Genet A ; 176(5): 1184-1189, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29681092

RESUMO

Lipoic acid is an essential cofactor for the mitochondrial 2-ketoacid dehydrogenase complexes and the glycine cleavage system. Lipoyltransferase 1 catalyzes the covalent attachment of lipoate to these enzyme systems. Pathogenic variants in LIPT1 gene have recently been described in four patients from three families, commonly presenting with severe lactic acidosis resulting in neonatal death and/or poor neurocognitive outcomes. We report a 2-month-old male with severe lactic acidosis, refractory status epilepticus, and brain imaging suggestive of Leigh disease. Exome sequencing implicated compound heterozygous LIPT1 pathogenic variants. We describe the fifth case of LIPT1 deficiency, whose phenotype progressed to that of an early infantile epileptic encephalopathy, which is novel compared to previously described patients whom we will review. Due to the significant biochemical and phenotypic overlap that LIPT1 deficiency and mitochondrial energy cofactor disorders have with pyruvate dehydrogenase deficiency and/or nonketotic hyperglycinemia, they are and have been presumptively under-diagnosed without exome sequencing.


Assuntos
Aciltransferases/deficiência , Estudos de Associação Genética , Doença de Leigh/diagnóstico , Doença de Leigh/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/diagnóstico , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Espasmos Infantis/diagnóstico , Espasmos Infantis/genética , Alelos , Biomarcadores , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Diagnóstico Diferencial , Eletroencefalografia , Estudos de Associação Genética/métodos , Genótipo , Humanos , Lactente , Imageamento por Ressonância Magnética/métodos , Masculino , Fenótipo , Sequenciamento do Exoma
19.
Cell Mol Life Sci ; 75(16): 3009-3026, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29445841

RESUMO

The pyruvate dehydrogenase complex (PDC) bridges glycolysis and the citric acid cycle. In human, PDC deficiency leads to severe neurodevelopmental delay and progressive neurodegeneration. The majority of cases are caused by variants in the gene encoding the PDC subunit E1α. The molecular effects of the variants, however, remain poorly understood. Using yeast as a eukaryotic model system, we have studied the substitutions A189V, M230V, and R322C in yeast E1α (corresponding to the pathogenic variants A169V, M210V, and R302C in human E1α) and evaluated how substitutions of single amino acid residues within different functional E1α regions affect PDC structure and activity. The E1α A189V substitution located in the heterodimer interface showed a more compact conformation with significant underrepresentation of E1 in PDC and impaired overall PDC activity. The E1α M230V substitution located in the tetramer and heterodimer interface showed a relatively more open conformation and was particularly affected by low thiamin pyrophosphate concentrations. The E1α R322C substitution located in the phosphorylation loop of E1α resulted in PDC lacking E3 subunits and abolished overall functional activity. Furthermore, we show for the E1α variant A189V that variant E1α accumulates in the Hsp60 chaperonin, but can be released upon ATP supplementation. Our studies suggest that pathogenic E1α variants may be associated with structural changes of PDC and impaired folding of E1α.


Assuntos
Substituição de Aminoácidos , Piruvato Desidrogenase (Lipoamida)/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/genética , Proteínas de Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microscopia Confocal , Dobramento de Proteína , Piruvato Desidrogenase (Lipoamida)/química , Piruvato Desidrogenase (Lipoamida)/metabolismo , Complexo Piruvato Desidrogenase/química , Complexo Piruvato Desidrogenase/metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos
20.
Mol Genet Metab ; 122(3): 61-66, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28918066

RESUMO

Pyruvate dehydrogenase complex (PDC) deficiency is a major cause of primary lactic acidemia in children. Prompt and correct diagnosis of PDC deficiency and differentiating between specific vs generalized, or secondary deficiencies has important implications for clinical management and therapeutic interventions. Both genetic and enzymatic testing approaches are being used in the diagnosis of PDC deficiency. However, the diagnostic efficacy of such testing approaches for individuals affected with PDC deficiency has not been systematically investigated in this disorder. We sought to evaluate the diagnostic sensitivity and variability of the various PDC enzyme assays in females and males at the Center for Inherited Disorders of Energy Metabolism (CIDEM). CIDEM data were filtered by lactic acidosis and functional PDC deficiency in at least one cell/tissue type (blood lymphocytes, cultured fibroblasts or skeletal muscle) identifying 186 subjects (51% male and 49% female), about half were genetically resolved with 78% of those determined to have a pathogenic PDHA1 mutation. Assaying PDC in cultured fibroblasts in cases where the underlying genetic etiology is PDHA1, was highly sensitive irrespective of gender; 97% (95% confidence interval [CI]: 90%-100%) and 91% (95% CI: 82%-100%) in females and males, respectively. In contrast to the fibroblast-based testing, the lymphocyte- and muscle-based testing were not sensitive (36% [95% CI: 11%-61%, p=0.0003] and 58% [95% CI: 30%-86%, p=0.014], respectively) for identifying known PDC deficient females with pathogenic PDHA1 mutations. In males with a known PDHA1 mutation, the sensitivity of the various cell/tissue assays (75% lymphocyte, 91% fibroblast and 88% muscle) were not statistically different, and the discordance frequency due to the specific cell/tissue used for assaying PDC was 0.15±0.11. Based on this data, a practical diagnostic algorithm is proposed accounting for current molecular approaches, enzyme testing sensitivity, and variability due to gender, cell/tissue type used for testing, and successive repeat testing.


Assuntos
Algoritmos , Ensaios Enzimáticos/métodos , Fibroblastos/metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/diagnóstico , Complexo Piruvato Desidrogenase/genética , Acidose Láctica/metabolismo , Bioquímica/métodos , Células Cultivadas , Ensaios Enzimáticos/instrumentação , Feminino , Humanos , Linfócitos/metabolismo , Masculino , Mutação , Piruvato Desidrogenase (Lipoamida)/genética , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...